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Mathematics is a necessary avenue to scientific knowledge which opens new vistas of 
mental ability. Engineering mathematics offers a balance of theory and practice, which is 

intellectually stimulating. Learning the craft of applying mathematics to real world problems allow 
an Engineering student to find the solutions of the problem.

Calculus and Linear Algebra is intended mainly for undergraduate students of B.Tech (CSE) 
of 21st century with the aim to provide a sound understanding in the subject of mathematics..
This book is strictly aligned with AICTE model curriculum incorporating student centric and self-
learning activities as per New National Education Policy based on OBE and Bloom Taxonomy. The 
topics are well organized to create interest among readers to study and apply the mathematical tools 
in engineering and science disciplines. The book mainly emphasizes on the practical applications 
of the concepts discussed in the units which will help the students to incorporate a deliberate focus 
on problem - solving skills.

The book consists of 5 units. For more understanding of the topic, a good number of relatively 
competitive problems are given at the end of each unit in the form of short questions, HOTS, 
assignments, MCQs and know more. Practical/Projects/Activity also given in each unit for 
enhancing the student’s capability and to increase the feeling of team work. To clarify the subject, 
the text has been supplemented through Notes, Observations and Remarks. An attempt has been 
made to explain the topics through maximum use of geometries wherever possible.

Unit-1 deals with the application of derivatives, curvature, definite and improper integrals, 
Beta-Gamma functions with their properties,

Unit-2 is concerned to find the solution by using Rolle’s theorem, Mean value theorem, Taylor’s 
and Maclaurin’s theorems, L’Hospital Rule and Maxima-minima for one variable.

Unit-3 deals with matrices, determinant, solution of linear system of equations with various 
methods, rank, Crammer’s Rule, Gauss Elimination method and Gauss Jordan method with 
examples.

Unit-4 focuses on vector space, dependence, independence of vectors, basis, dimension, 
Inverse of a linear transformation, rank- nullity theorem, composition of linear maps with matrix 
associated with it.

Unit-5 discusses eigen values, eigenvectors, diagonalization, Inner product spaces, Gram-
Schmidt orthogonalization and theorems based of symmetric and skew-symmetric matrices.

Mathematics is a subject that can be mastered only through hard work and practice. Practice is the only 
key word in the learning process of mathematics.

I hope this book will meet the requirements and expectations of all the engineering students. 
Although every care has been taken to avoid misprints and mistakes, yet it is difficult to claim 
perfection. I will gratefully receive and acknowledge every comment and suggestions from the 
teachers and the students leading to improvements in the text as well as in solved examples. 

Reena Garg

Preface





(ix)

For the implementation of an outcome based education the first requirement is to develop an 
outcome based curriculum and incorporate an outcome based assessment in the education 
system. By going through outcome based assessments evaluators will be able to evaluate whether 
the students have achieved the outlined standard, specific and measurable outcomes. With the 
proper incorporation of outcome based education there will be a definite commitment to achieve 
a minimum standard for all learners without giving up at any level. At the end of the programme 
running with the aid of outcome based education, a student will be able to arrive at the following 
outcomes: 

PO-1.	� Engineering knowledge: Apply the knowledge of mathematics, science, engineering 
fundamentals, and an engineering specialization to the solution of complex engineering 
problems.

PO-2.	� Problem analysis: Identify, formulate, review research literature, and analyze complex 
engineering problems reaching substantiated conclusions using first principles of 
mathematics, natural sciences, and engineering sciences. 

PO-3.	� Design/development of solutions: Design solutions for complex engineering problems 
and design system components or processes that meet the specified needs with appropriate 
consideration for the public health and safety, and the cultural, societal, and environmental 
considerations. 

PO-4.	� Conduct investigations of complex problems: Use research-based knowledge and 
research methods including design of experiments, analysis and interpretation of data, and 
synthesis of the information to provide valid conclusions. 

PO-5.	� Modern tool usage: Create, select, and apply appropriate techniques, resources, and 
modern engineering and IT tools including prediction and modeling to complex engineering 
activities with an understanding of the limitations. 

PO-6.	� The engineer and society: Apply reasoning informed by the contextual knowledge to 
assess societal, health, safety, legal and cultural issues and the consequent responsibilities 
relevant to the professional engineering practice. 

PO-7.	� Environment and sustainability: Understand the impact of the professional engineering 
solutions in societal and environmental contexts, and demonstrate the knowledge of, and 
need for sustainable development. 

PO-8.	� Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 
norms of the engineering practice. 

PO-9.	� Individual and team work: Function effectively as an individual, and as a member or 
leader in diverse teams, and in multidisciplinary settings.

Outcome Based Education
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PO-10.	� Communication: Communicate effectively on complex engineering activities with the 
engineering community and with society at large, such as, being able to comprehend and 
write effective reports and design documentation, make effective presentations, and give 
and receive clear instructions. 

PO-11.	 �Project management and finance: Demonstrate knowledge and understanding of the 
engineering and management principles and apply these to one’s own work, as a member 
and leader in a team, to manage projects and in multidisciplinary environments. 

PO-12.	� Life-long learning: Recognize the need for, and have the preparation and ability to engage 
in independent and life-long learning in the broadest context of technological change.
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After completion of the course the students will be able to:

CO-1:	� Apply Differential and Integral Calculus to notion of curvature, Centre of curvature and 
evaluate improper integrals using correct mathematical limit notation. Apart from these 
applications they will have a basic understanding of Beta and Gamma Functions   

CO-2:	� Examine the behaviour of function for a given interval and expansion of trigonometric and 
transcendental functions

CO-3:	� Formulate, analyse, solve and apply the concept of matrices on the problems based on 
linear system of equations and relate them with linear transformations.

CO-4:	� Classify linear Independence and linear dependence of vectors and explain the concepts of 
rank, basis and dimension of vector Space, in addition of this, also learn to composition of 
linear maps and association with matrices.

CO-5:	� Apply essential tool to solve numerical problems based on Eigen values, Eigen vectors, 
Eigenbases, diagonalisation and orthogonalisation with the help of, linear algebra. Also 
deal with various properties of Eigen values which are used to solve many complex 
problems in various branches of engineering. In addition to that aware with the concept of 
norm of a vector , orthonormal and orthogonal vectors 

Mapping of Course Outcomes with Programme Outcomes to be done according to the matrix 
given below:

Course 
Outcome

Expected Mapping with Programme Outcomes 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12

CO-1 3 2 2 1 1 - 2 - - - - -

CO-2 3 2 2 2 - - - - - - - 1

CO-3 3 3 3 1 2 2 - - 1 1 - 1

CO-4 3 2 1 1 1 1 - - - - - -

CO-5 3 2 2 2 2 1 - - - - 1 -

Course Outcomes
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1.	 Number System
N	 –	 set of natural numbers

	 –	 set of integers

Q	 –	 set of rational numbers

I	 –	 set of irrational numbers

	 –	 set of real numbers

C	 –	 set of complex numbers

Rn	 –	 set of n-tuples

2.	 Greek Letters
a	 –	 alpha

b	 –	 beta

g	 –	 gamma

G	 –	 capital gamma

d	 –	 delta

D	 –	 capital delta

e	 –	 epsilon

ι	 –	 iota

q	 –	 theta

l	 –	 lambda

m	 –	 mu

f	 –	 phi

y	 –	 psi

h	 –	 eta

p	 –	 pi

r	 –	 rho

κ	 –	 kappa

3.	 Notation in sets
∈	 –	 belongs to

∉	 –	 not belongs to

∪	 –	 Union

∩	 –	 Intersection

( )	 –	 open interval

[ ]	 –	 close interval

⊆	 –	 subset

⊆	 –	 not subset

⊂	 –	 proper subset

	 –	 not a proper subset

⊃	 –	 superset

{ }	 –	 set

f	 –	 empty set

<	 –	  strictly less than

>	 –	 strictly greater than

≤	 –	 less than or equal to

≥	 –	 greater than or equal to

4.	 Some Other Useful Symbols
∼	 –	 equivalent to

↔	 –	 interchange

∞	 –	 infinity

∫	 –	 integral

!	 –	 factorial

⇒	 –	 implies

∀	 –	 for all

⇔	 –	 implies and implied by

|| ||	 –	 norm

| |	 –	 modulus

:	 –	 colon

;	 –	 semicolon

[A : B] or [A/B] – Augmented Matrix

5.	 Nature of Roots of an Quadratic equations
If ax2 + bx + c = 0 is quadratic, then

(a)	 its roots are given by 
− ± −2 4

2

b b ac

a

(b)	 the sum of the roots is equal to –b/a

(c)	 product of the roots is equal to c/a

(d)	 b2 – 4ac = 0  ⇒  the roots are equal

(e)	 b2 – 4ac > 0  ⇒  the roots are real and 
distinct

(f)	 b2 – 4ac < 0  ⇒  the roots are complex

(g)	 If b2 – 4ac is a perfect square, then the 
roots are rational.

Abbreviations and Symbols

SYMBOLS AND FORMULAE
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6.	 Properties of Logarithm
(a)	 loga 1 = 0, loga 0 = –∞ for a > 1,

	 loga a = 1

	 loge 2 = 0.6931

	 loge 10 = 2.3026, log10 e = 0.4343

(b)	 loga p + loga q = loga pq

(c)	 loga p – loga q = loga 
p

q

(d)	 loga pq = q loga p

7.	 Nature of Trigonometric Ratios in Quadrant

	

90°

180°

270°

0°

sin q and cosec q 
are +ve

tan q and cot q 
are +ve

All trigonometric 
ratios are +ve

cos q and sec q 
are +ve

(II quadrant)

(III quadrant)

(I quadrant)

(IV quadrant)

8.	 Product and Sum Formulae for trigono-
metric functions
(a)	 sin (A + B) = sin A cos B + cos A sin B

(b)	 sin (A – B) = sin A cos B – cos A sin B

(c)	 cos (A + B) = cos A cos B – sin A sin B

(d)	 cos (A – B) = cos A cos B + sin A sin B

(e)	 tan (A + B) = 
tan tan

tan tan

A B

A B

�
�1

(f )	 tan (A  – B) = 
tan tan

tan tan

A B

A B

�
�1

(g)	 sin 2A = 2 sin A cos A = 
2

1 2

tan

tan

A

A+
(h)	 cos 2A = cos2A – sin2 A

           = 1 – 2 sin2 A

           = 2 cos2 A – 1 = 1

1

2

2

�
�

tan

tan

A

A

(i)	 tan 2A = 
sin

cos

tan

tan

2

2

2

1 2

A

A

A

A
�

�
(j)	 sin 3A = 3 sin A – 4 sin3 A

(k)	 cos 3A = 4 cos3 A – 3 cos A

(l)	 tan 3A = 
3

1 3

3

2

tan tan

tan

A A

A

−
−

(m)	 sin A + sin B = 2 sin 
A B A B� �

2 2
cos

(n)	 sin A – sin B = 2 cos 
A B A B� �

2 2
sin

(o)	 cos A + cos B = 2 cos A B A B� �
2 2

cos

(p)	 cos A – cos B = 2 sin 
A B B A� �

2 2
sin

(q)	 sin A cos B = 
1

2
 [sin(A + B) + sin(A – B)]

(r)	 cos A sin B = 
1

2
 [sin(A + B) – sin(A – B)]

(s)	 cos A cos B = 
1

2
[cos(A + B) + cos(A – B)]

(t)	 sin A sin B = 
1

2
[cos(A – B) – cos(A + B)]

(u)	 sin x = 0 ⇔ x = np, n ∈ Z
(v)	 sin x = ± 1 ⇔ x = (4n ± 1) 

π
2

, n ∈ Z

(w)	 cos x = 0 ⇔ x = (2n + 1) π
2

, n ∈ Z

(x)	 cos x = ± 1 ⇔ x = 2np and x = (2n + 1)p, 
n ∈ Z

(y)	 eax ≠ 0, ∀ x ∈ R; a ∈ R

9.	 Basic differentiation formulae

(a)	
d

dx
 (sin x) = cos x

(b)	
d

dx
 (cos x) = – sin x

(c)	
d

dx
 (tan x) = sec2 x
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(d)	
d

dx
 (cot x) = –cosec2 x

(e)	
d

dx
 (sec x) = sec x tan x

(f )	
d

dx
 (cosec x) = –cosec x cot x

(g)	
d

dx
ex( )  = ex

(h)	
d

dx
ax( )  = ax loge a

(i)	
d

dx
x

x a
a(log )

log
=

1

(j)	
d

dx
x

x
e(log )=

1

(k)	
d

dx
ax b na ax bn n( ) ( )� � � �1

(l)	
d

dx
x

x
(sin )� �

�

1

2

1

1
, x ≠ ±1

(m)	
d

dx
x

x
(cos )� � �

�

1

2

1

1
, x ≠ ±1

(n)	
d

dx
x

x
(tan )� �

�
1

2

1

1

(o)	
d

dx
x

x
(cot )� �

�
�

1
2

1

1

(p)	 d

dx
x

x x
(sec )� �

�

1

2

1

1
, x ≠ 0, ±1

(q)	
d

dx
x

x x
(cosec )� � �

�

1

2

1

1
, x ≠ 0, ±1

(r)	
d

dx
hx hx(sin ) cos=

(s)	
d

dx
hx hx(cos ) sin� �

10.	 Basic Integration Formulae

(a)	 ∫ sin x dx  = – cos x + c

(b)	 ∫cos x dx  = sin x + c

(c)	 ∫ tan x dx  = – log cos x + c = log sec x + c

(d)	 ∫cot x dx  = log sin x + c

(e)	 ∫ sec x dx  = log (sec x + tan x) + c

(f )	 ∫cosec x dx  = log (cosec x – cot x) + c

(g)	 ∫ 2sec x dx  = tan x + c

(h)	 ∫ 2cosec x dx  = – cot x + c

(i)	 ∫ xe dx  = ex

(j)	 =∫ log

x
x

e

a
a dx

a
 + c; a > 0, a ≠ 1

(k)	 =∫
1

logedx x
x

 + c

(l)	
1

, 1
1

n
n x

x dx c n
n

+
= + ≠ −

+∫

(m) −=
+∫ 1

2 2

1
tan

dx x

a aa x
 + c

(n)	
 +=  −−  

∫ 2 2

1
log

2

a xdx

a a xa x
 + c

(o)	
 −=  +−  

∫ 2 2

1
log

2

x adx

a x ax a
 + c

(p)	 −=
−

∫ 1

2 2
sin

dx x

aa x
 + c

(q)	 −=
+

∫ 1

2 2
sin

dx x
h

aa x
 + c

(r)	
−=

−
∫ 1

2 2
cos

dx x
h

ax a
 + c

(s)	 =
+∫ 2 2

sin
ax

ax e
e bx dx

a b
 (a sin bx

� – b cos bx)

(t)	 =
+∫ 2 2

cos
ax

ax e
e bx dx

a b
 (a cos bx

� + b sin bx)
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lim	 –	 limit

\	 –	 therefore

∵ 	 –	 because of

i.e.,	 –	 that is

f n(a)	 –	 nth derivative of (f ) at ‘a’

sup.	 –	 supremum

Inf.	 –	 infimum

Lf ′(a)	 –	 left hand derivative of ‘f ’ at ‘a’

Rf ′(a)	 –	 right hand derivative of ‘f ’ at ‘a’

Lf (a)	 –	 left hand limit of ‘f ’ at ‘a’

Rf(a)	 –	 right hand limit of ‘f ’ at ‘a’

diag.	 –	 diagonal

L.H.S.	 –	 left hand side

R.H.S.	 –	 right hand side

dim	 –	 dimension

adj (A)	 –	 adjoint of matrix A

min.	 –	 minimum

max.	 –	 maximum

L.C.	 –	 linear combination

L.D.	 –	 linear dependence

L.I.	 –	 linear independence 

ABBREVIATIONS
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Guidelines for Teachers
To implement Outcome Based Education (OBE) knowledge level and skill set of the students 
should be enhanced. Teachers should take a major responsibility for the proper implementation of 
OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

•	� Within reasonable constraint, they should manipulate time to the best advantage of all 
students.

•	 �They should assess the students only upon certain defined criterion without considering 
any other potential ineligibility to discriminate them.

•	� They should try to grow the learning abilities of the students to a certain level before they 
leave the institute.

•	� They should try to ensure that all the students are equipped with the quality knowledge as 
well as competence after they finish their education.

•	� They should always encourage the students to develop their ultimate performance 
capabilities.  

•	� They should facilitate and encourage group work and team work to consolidate newer 
approach.  

•	� They should follow Blooms taxonomy in every part of the assessment.

Bloom’s Taxonomy

Creating

Applying

Level
Teacher should 

Check
Student should be 

able to
Possible Mode of 

Assessment

Evaluating

Understanding

Analysing

Remembering Students ability to 
recall (or remember)

Students ability to 
explain the ideas

Students ability to use 
information

Students ability to 
distinguish

Students ability to 
Justify

Students ability to 
create

Define or Recall

Explain or Classify

Operate or 
Demonstrate

Differentiate or 
Distinguish

Argue or Defend

Design or Create

Quiz

Presentation/Seminar

Technical Presentation/ 
Demonstration

Project/Lab 
Methodology

Assignment

Mini project

Guidelines for Students
Students should take equal responsibility for implementing the OBE. Some of the responsibilities 
(not limited to) for the students in OBE system are as follows:

•	� Students should be well aware of each UO before the start of a unit in each and every 
course.

•	 Students should be well aware of each CO before the start of the course.
•	 Students should be well aware of each PO before the start of the programme.
•	 Students should think critically and reasonably with proper reflection and action.
•	� Learning of the students should be connected and integrated with practical and real life 

consequences.
•	 Students should be well aware of their competency at every level of OBE.
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