MATHEMATICS - I (Calculus and Linear Algebra)

For Computer Science Engineering Branches

Reena Garg

KHANNA BOOK PUBLISHING CO. (P) LTD.

PUBLISHER OF ENGINEERING AND COMPUTER BOOKS 4C/4344, Ansari Road, Darya Ganj, New Delhi-110002 Phone: 011-23244447-48 Mobile: +91-99109 09320 E-mail: contact@khannabooks.com Website: www.khannabooks.com Dear Readers,

To prevent the piracy, this book is secured with HIGH SECURITY HOLOGRAM on the front title cover. In case you don't find the hologram on the front cover title, please write us to at contact@khannabooks.com or whatsapp us at +91-99109 09320 and avail special gift voucher for yourself.

Specimen of Hologram on front Cover title:

Moreover, there is a SPECIAL DISCOUNT COUPON for you with EVERY HOLOGRAM.

How to avail this SPECIAL DISCOUNT:

Step 1: Scratch the hologram

Step 2: Under the scratch area, your "coupon code" is available

Step 3: Logon to www.khannabooks.com

Step 4: Use your "coupon code" in the shopping cart and get your copy at a special discount

Step 5: Enjoy your reading!

ISBN: 978-93-91505-27-1 Book Code: UG012EN

MATHEMATICS - I

(Calculus and Linear Algebra) For Computer Science Engineering Branches by Reena Garg [English Edition]

First Edition: 2021

Published by:

Khanna Book Publishing Co. (P) Ltd. Visit us at: www.khannabooks.com Write us at: contact@khannabooks.com *CIN: U22110DL1998PTC095547*

To view complete list of books, Please scan the QR Code:

Copyright © Reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission of the publisher.

This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published.

Disclaimer: The website links provided by the author in this book are placed for informational, educational & reference purpose only. The Publisher do not endorse these website links or the views of the speaker/ content of the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction only.

Printed in India.

प्रो. अनिल डी. सहम्रबुद्धे अघ्यक्ष Prof. Anil D. Sahasrabudhe ^{Chairman}

सत्यमेव जयते

अखिल भारतीय तकनीकी शिक्षा परिषद् (मारत सरकार का एक सांविधिक निकाय) (शिक्षा मंत्रालय, मारत सरकार) नेल्सन मंडेला मार्ग, बसंत कुज, नई दिल्ली–110070 दूरमाष : 011–26131498 ई–मेल : chairman@aicte-india.org

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION (A STATUTORY BODY OF THE GOVT. OF INDIA) (Ministry of Education, Govt. of India) Nelson Mandela Marg, Vasant Kunj, New Delhi-110070 Phone : 011-26131498 E-mail : chairman@aicte-india.org

FOREWORD

Engineering has played a very significant role in the progress and expansion of mankind and society for centuries. Engineering ideas that originated in the Indian subcontinent have had a thoughtful impact on the world.

All India Council for Technical Education (AICTE) had always been at the forefront of assisting Technical students in every possible manner since its inception in 1987. The goal of AICTE has been to promote quality Technical Education and thereby take the industry to a greater heights and ultimately turn our dear motherland India into a Modern Developed Nation. It will not be inept to mention here that Engineers are the backbone of the modern society - better the engineers, better the industry, and better the industry, better the country.

NEP 2020 envisages education in regional languages to all, thereby ensuring that each and every student becomes capable and competent enough and is in a position to contribute towards the national growth and development.

One of the spheres where AICTE had been relentlessly working from last few years was to provide high-quality moderately priced books of International standard prepared in various regional languages to all it's Engineering students. These books are not only prepared keeping in mind it's easy language, real life examples, rich contents and but also the industry needs in this everyday changing world. These books are as per AICTE Model Curriculum of Engineering & Technology – 2018.

Eminent Professors from all over India with great knowledge and experience have written these books for the benefit of academic fraternity. AICTE is confident that these books with their rich contents will help technical students master the subjects with greater ease and quality.

AICTE appreciates the hard work of the original authors, coordinators and the translators for their endeavour in making these Engineering subjects more lucid.

- AD ahre

(Anil D. Sahasrabudhe)

Acknowledgement

The author grateful to AICTE for their meticulous planning and execution to publish the technical book for Engineering and Technology students.

I sincerely acknowledge the valuable contributions of the reviewer of the book Prof. Garima Singh, for making it students' friendly and giving a better shape in an artistic manner.

This book is an outcome of various suggestions of AICTE members, experts and authors who shared their opinion and thoughts to further develop the engineering education in our country.

It is also with great honour that I state that this book is aligned to the AICTE Model Curriculum and in line with the guidelines of National Education Policy (NEP) -2020. Towards promoting education in regional languages, this book is being translated in scheduled Indian regional languages.

Acknowledgements are due to the contributors and different workers in this field whose published books, review articles, papers, photographs, footnotes, references and other valuable information enriched us at the time of writing the book.

Finally, I like to express our sincere thanks to the publishing house, M/s. Khanna Book Publishing Company Private Limited, New Delhi, whose entire team was always ready to cooperate on all the aspects of publishing to make it a wonderful experience.

Reena Garg

Preface

Mathematics is a necessary avenue to scientific knowledge which opens new vistas of mental ability. Engineering mathematics offers a balance of theory and practice, which is intellectually stimulating. Learning the craft of applying mathematics to real world problems allow an Engineering student to find the solutions of the problem.

Calculus and Linear Algebra is intended mainly for undergraduate students of B.Tech **(CSE)** of 21st century with the aim to provide a sound understanding in the subject of mathematics.. This book is strictly aligned with AICTE model curriculum incorporating student centric and self-learning activities as per New National Education Policy based on **OBE** and **Bloom Taxonomy**. The topics are well organized to create interest among readers to study and apply the mathematical tools in engineering and science disciplines. The book mainly emphasizes on the practical applications of the concepts discussed in the units which will help the students to incorporate a deliberate focus on problem - solving skills.

The book consists of **5** units. For more understanding of the topic, a good number of relatively competitive problems are given at the end of each unit in the form of **short questions**, **HOTS**, **assignments**, **MCQs** and **know more**. **Practical/Projects/Activity** also given in each unit for enhancing the student's capability and to increase the feeling of team work. To clarify the subject, the text has been supplemented through **Notes**, **Observations** and **Remarks**. An attempt has been made to explain the topics through maximum use of geometries wherever possible.

Unit-1 deals with the application of derivatives, curvature, definite and improper integrals, Beta-Gamma functions with their properties,

Unit-2 is concerned to find the solution by using Rolle's theorem, Mean value theorem, Taylor's and Maclaurin's theorems, L'Hospital Rule and Maxima-minima for one variable.

Unit-3 deals with matrices, determinant, solution of linear system of equations with various methods, rank, Crammer's Rule, Gauss Elimination method and Gauss Jordan method with examples.

Unit-4 focuses on vector space, dependence, independence of vectors, basis, dimension, Inverse of a linear transformation, rank- nullity theorem, composition of linear maps with matrix associated with it.

Unit-5 discusses eigen values, eigenvectors, diagonalization, Inner product spaces, Gram-Schmidt orthogonalization and theorems based of symmetric and skew-symmetric matrices.

Mathematics is a subject that can be mastered only through hard work and practice. Practice is the only key word in the learning process of mathematics.

I hope this book will meet the requirements and expectations of all the engineering students. Although every care has been taken to avoid misprints and mistakes, yet it is difficult to claim perfection. I will gratefully receive and acknowledge every comment and suggestions from the teachers and the students leading to improvements in the text as well as in solved examples.

Outcome Based Education

For the implementation of an outcome based education the first requirement is to develop an outcome based curriculum and incorporate an outcome based assessment in the education system. By going through outcome based assessments evaluators will be able to evaluate whether the students have achieved the outlined standard, specific and measurable outcomes. With the proper incorporation of outcome based education there will be a definite commitment to achieve a minimum standard for all learners without giving up at any level. At the end of the programme running with the aid of outcome based education, a student will be able to arrive at the following outcomes:

- **PO-1. Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO-2. Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO-3.** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO-4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO-5.** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO-6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO-7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO-8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO-9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

- **PO-10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO-11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO-12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

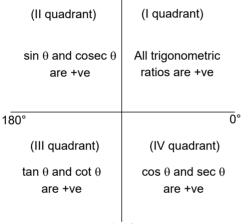
After completion of the course the students will be able to:

- **CO-1:** Apply Differential and Integral Calculus to notion of curvature, Centre of curvature and evaluate improper integrals using correct mathematical limit notation. Apart from these applications they will have a basic understanding of Beta and Gamma Functions
- **CO-2:** Examine the behaviour of function for a given interval and expansion of trigonometric and transcendental functions
- **CO-3:** Formulate, analyse, solve and apply the concept of matrices on the problems based on linear system of equations and relate them with linear transformations.
- **CO-4:** Classify linear Independence and linear dependence of vectors and explain the concepts of rank, basis and dimension of vector Space, in addition of this, also learn to composition of linear maps and association with matrices.
- **CO-5:** Apply essential tool to solve numerical problems based on Eigen values, Eigen vectors, Eigenbases, diagonalisation and orthogonalisation with the help of, linear algebra. Also deal with various properties of Eigen values which are used to solve many complex problems in various branches of engineering. In addition to that aware with the concept of norm of a vector, orthonormal and orthogonal vectors

Mapping of Course Outcomes with Programme Outcomes to be done according to the matrix given below:

Course Outcome		(1-			d Mapp ation; 2-					o mes g Correla	ation)	
Outcome	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	2	2	1	1	-	2	-	-	-	-	-
CO-2	3	2	2	2	-	-	-	-	-	-	-	1
CO-3	3	3	3	1	2	2	-	-	1	1	-	1
CO-4	3	2	1	1	1	1	-	-	-	-	-	-
CO-5	3	2	2	2	2	1	-	-	-	-	1	-

Abbreviations and Symbols


SYMBOLS AND FORMULAE

1.	Numb	er Sy	rstem	1	\subset	_	proper subset
	N	_	set of natural numbers		¢	_	not a proper subset
	\mathbb{Z}	_	set of integers		\supset	_	superset
	Q	_	set of rational numbers		{ }	_	set
	Ι	_	set of irrational numbers		φ	_	empty set
	\mathbb{R}	_	set of real numbers		<	_	strictly less than
	С	_	set of complex numbers		>	_	strictly greater than
	\mathbb{R}^n	_	set of <i>n</i> -tuples		\leq	_	less than or equal to
2.	Greek	Lette	ers		\geq	_	greater than or equal to
	α	-	alpha	4.	Som	e Othe	r Useful Symbols
	β	_	beta		~	-	equivalent to
	γ	-	gamma		\leftrightarrow	-	interchange
	Γ	-	capital gamma		8	-	infinity
	δ	-	delta		∫	-	integral
	Δ	-	capital delta		!	_	factorial
	3	-	epsilon		\Rightarrow	_	implies
	ι	-	iota		\forall	_	for all
	θ	-	theta		\Leftrightarrow	_	implies and implied by
	λ	_	lambda			-	norm
	μ	—	mu			-	modulus
	φ	_	phi		:	_	colon
	Ψ	-	psi		;	_	semicolon
	η	-	eta				A/B] – Augmented Matrix
	π	-	pi	5.			Roots of an Quadratic equations
	ρ	-	rho		If ax	$x^2 + bx$	+ c = 0 is quadratic, then
	κ	-	kappa				ts are given by $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
3.	Notati	on iı	1 sets		(<i>a</i>)	its roo	ts are given by $\frac{\sqrt{2a}}{2a}$
	∈	-	belongs to				
	∉	-	not belongs to				m of the roots is equal to $-b/a$
	\cup	_	Union			-	ct of the roots is equal to c/a
	\cap	_	Intersection				$ac = 0 \implies$ the roots are equal
	()	-	open interval		(e)	$b^2 - 4a$ distinct	$ac > 0 \implies$ the roots are real and
	[]	—	close interval		(A)		$ac < 0 \implies$ the roots are complex
	\subseteq	-	subset		(g)		- $4ac$ is a perfect square, then the
	⊈	-	not subset		(8)		are rational.
				÷		100101	

6. Properties of Logarithm

- (a) $\log_a 1 = 0$, $\log_a 0 = -\infty$ for a > 1, $\log_a a = 1$ $\log_e 2 = 0.6931$ $\log_e 10 = 2.3026$, $\log_{10} e = 0.4343$
- (b) $\log_a p + \log_a q = \log_a pq$
- (c) $\log_a p \log_a q = \log_a \frac{p}{q}$
- (d) $\log_a p^q = q \log_a p$

7. Nature of Trigonometric Ratios in Quadrant 90°

8. Product and Sum Formulae for trigonometric functions

- (a) $\sin (A + B) = \sin A \cos B + \cos A \sin B$
- (b) $\sin (A B) = \sin A \cos B \cos A \sin B$
- (c) $\cos (A + B) = \cos A \cos B \sin A \sin B$
- (d) $\cos (A B) = \cos A \cos B + \sin A \sin B$

(e)
$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

(f) $\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$
(g) $\sin 2A = 2 \sin A \cos A = \frac{2 \tan A}{1 + \tan^2 A}$
(h) $\cos 2A = \cos^2 A - \sin^2 A$
 $= 1 - 2 \sin^2 A$
 $= 2 \cos^2 A - 1 = \frac{1 - \tan^2 A}{1 + \tan^2 A}$

(i)
$$\tan 2A = \frac{\sin 2A}{\cos 2A} = \frac{2 \tan A}{1 - \tan^2 A}$$

(j) $\sin 3A = 3 \sin A - 4 \sin^3 A$
(k) $\cos 3A = 4 \cos^3 A - 3 \cos A$
(l) $\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$
(m) $\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$
(n) $\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$
(o) $\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$
(p) $\cos A - \cos B = 2 \sin \frac{A + B}{2} \sin \frac{B - A}{2}$
(q) $\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$
(r) $\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$
(s) $\cos A \cos B = \frac{1}{2} [\cos(A + B) - \sin(A - B)]$
(t) $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$
(u) $\sin x = 0 \Leftrightarrow x = n\pi, n \in \mathbb{Z}$
(v) $\sin x = \pm 1 \Leftrightarrow x = (4n \pm 1) \frac{\pi}{2}, n \in \mathbb{Z}$
(w) $\cos x = 0 \Leftrightarrow x = (2n + 1) \frac{\pi}{2}, n \in \mathbb{Z}$
(x) $\cos x = \pm 1 \Leftrightarrow x = 2n\pi$ and $x = (2n + 1)\pi$
 $n \in \mathbb{Z}$
(y) $e^{ax} \neq 0, \forall x \in \mathbb{R}; a \in \mathbb{R}$
Basic differentiation formulae
(a) $\frac{d}{dx} (\sin x) = \cos x$
(b) $\frac{d}{dx} (\cos x) = -\sin x$

(xiii)

9.

(c) $\frac{d}{dx}$ (tan x) = sec² x

(d)
$$\frac{d}{dx}$$
 (cot x) = -cosec² x
(e) $\frac{d}{dx}$ (sec x) = sec x tan x
(f) $\frac{d}{dx}$ (cosec x) = -cosec x cot x
(g) $\frac{d}{dx}(e^x) = e^x$
(h) $\frac{d}{dx}(a^x) = a^x \log_e a$
(i) $\frac{d}{dx}(\log_e x) = \frac{1}{x}$
(k) $\frac{d}{dx}(\log_e x) = \frac{1}{x}$
(k) $\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}, x \neq \pm 1$
(n) $\frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1-x^2}}, x \neq \pm 1$
(n) $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$
(o) $\frac{d}{dx}(\cot^{-1} x) = \frac{-1}{1+x^2}$
(p) $\frac{d}{dx}(\sec^{-1} x) = \frac{1}{x\sqrt{x^2-1}}, x \neq 0, \pm 1$
(q) $\frac{d}{dx}(\csc^{-1} x) = -\frac{1}{x\sqrt{x^2-1}}, x \neq 0, \pm 1$
(r) $\frac{d}{dx}(\sin hx) = \cos hx$
(s) $\frac{d}{dx}(\cos hx) = -\sin hx$
Basic Integration Formulae

(a)
$$\int \sin x \, dx = -\cos x + c$$

10.

$$(b) \quad \int \cos x \, dx = \sin x + c$$

(c)
$$\int \tan x \, dx = -\log \cos x + c = \log \sec x + c$$

(d)
$$\int \cot x \, dx = \log (\sin x + c)$$

(e)
$$\int \sec x \, dx = \log (\sec x + \tan x) + c$$

(f)
$$\int \csc x \, dx = \log (\csc x - \cot x) + c$$

(g)
$$\int \sec^2 x \, dx = \tan x + c$$

(h)
$$\int \csc^2 x \, dx = -\cot x + c$$

(i)
$$\int e^x \, dx = e^x$$

(j)
$$\int a^x \, dx = \frac{a^x}{\log_e a} + c; a > 0, a \neq 1$$

(k)
$$\int \frac{1}{x} \, dx = \log_e x + c$$

(l)
$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$$

(m)
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$$

(n)
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left(\frac{a + x}{a - x}\right) + c$$

(o)
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left(\frac{x - a}{x + a}\right) + c$$

(p)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + c$$

(q)
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1} \frac{x}{a} + c$$

(r)
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1} \frac{x}{a} + c$$

(s)
$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx) - b \cos bx$$

(t)
$$\int e^{ax} \cosh x \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cosh x) + b \sin bx$$

......

ABBREVIATIONS

.....

lim	_	limit
.: .	_	therefore
\therefore	_	because of
i.e.,	_	that is
$f^n(a)$	_	<i>n</i> th derivative of (f) at ' <i>a</i> '
sup.	_	supremum
Inf.	_	infimum
Lf'(a)	_	left hand derivative of 'f' at 'a'
Rf'(a)	_	right hand derivative of 'f' at 'a'
Lf(a)	_	left hand limit of 'f' at 'a'
Rf(a)	-	right hand limit of ' f ' at ' a '

diag.	-	diagonal
L.H.S.	_	left hand side
R.H.S.	_	right hand side
dim	_	dimension
adj (A)	_	adjoint of matrix A
min.	_	minimum
max.	-	maximum
L.C.	_	linear combination
L.D.	_	linear dependence
L.I.	_	linear independence

List of Figures

Unit 1: Calculus I

Fig. 1.1: Bending of curve	2
Fig. 1.2: Curvature at a point	3
Fig. 1.3: Mathematical definition of curvature	3
Fig. 1.4: Specifics of curvature at a point	4
Fig. 1.5: Radius of curvature for Cartesian curve	4
Fig. 1.6: Radius of curvature for polar curve	5
Fig. 1.9: Centre of curvature	14
Fig. 1.10: Evolute	15
Fig. 1.11: Involute of a circle	16
Fig. 1.12: Involute of a Catenary	16
Fig. 1.13: Involute of a Deltoid	16
Fig. 1.14: Involute of a parabola	17
Fig. 1.15: Involute of an Ellipse	17
Fig. 1.17: Revolution of Right angled Triangle	75
Fig. 1.18: Rotation of circle	75
Fig. 1.19: Rotation of Square	75
Fig. 1.20: Volume of solid generated by revolution of a Cartesian curve	76
Unit 2: Calculus II	
Fig. 2.1: Rolle's theorem	101
Fig. 2.5: Lagrange's Mean Value Theorem	107
Fig. 2.6: Cauchy's Mean Value Theorem	113

0 -		-
Fig. 2.7:	Maxima –Minima	148
Fig. 2.8:	Test for Extrema	149
Fig. 2.9:	Local Extrema	150

Unit 3: Matrices

Fig. 3.1: Application of Unit Matrix	179
Fig. 3.2: Area of Triangle	195

Guidelines for Teachers

To implement Outcome Based Education (OBE) knowledge level and skill set of the students should be enhanced. Teachers should take a major responsibility for the proper implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

- Within reasonable constraint, they should manipulate time to the best advantage of all students.
- They should assess the students only upon certain defined criterion without considering any other potential ineligibility to discriminate them.
- They should try to grow the learning abilities of the students to a certain level before they leave the institute.
- They should try to ensure that all the students are equipped with the quality knowledge as well as competence after they finish their education.
- They should always encourage the students to develop their ultimate performance capabilities.
- They should facilitate and encourage group work and team work to consolidate newer approach.
- They should follow Blooms taxonomy in every part of the assessment.

Level	Teacher should Check	Student should be able to	Possible Mode of Assessment
Creating	Students ability to create	Design or Create	Mini project
Evaluating	Students ability to Justify	Argue or Defend	Assignment
Analysing	Students ability to distinguish	Differentiate or Distinguish	Project/Lab Methodology
Applying	Students ability to use information	Operate or Demonstrate	Technical Presentation/ Demonstration
Understanding	Students ability to explain the ideas	Explain or Classify	Presentation/Seminar
Remembering	Students ability to recall (or remember)	Define or Recall	Quiz

Bloom's Taxonomy

Guidelines for Students

Students should take equal responsibility for implementing the OBE. Some of the responsibilities (not limited to) for the students in OBE system are as follows:

- Students should be well aware of each UO before the start of a unit in each and every course.
- Students should be well aware of each CO before the start of the course.
- Students should be well aware of each PO before the start of the programme.
- Students should think critically and reasonably with proper reflection and action.
- Learning of the students should be connected and integrated with practical and real life consequences.
- Students should be well aware of their competency at every level of OBE.

Contents

		Forew	pord	iii
		Ackno	nvledgement	υ
		Prefac		vii
			me Based Education	ix
			e Outcomes	xi
			viations and Symbols	xii
			f Figures	xvi
			lines for Teachers	xvii
			lines for Students	xvii
_	~			
1.	Ca		s I	
			pecifics	1
		Ratio		1
			equisites	1
		Unit (1	
			ing of Unit Outcomes with Course Outcomes	2
		Histor		2
	1.1	curvat		2
		1.1.1	Mathematical definition of a curvature Radius of Curvature	3
		1.1.2		3
		1.1.3	Centre of Curvature, Circle of Curvature Coordinates of the Centre of Curvature	13
		1.1.4		14
		1.1.5 1.1.6	Evolute Involute	15 15
		1.1.7	Envelope	13
	12		ation of Definite and Improper Integral	33
	1.2	1.2.1	Definite Integral	33
			First Fundamental Theorem of Integral Calculus	35
		1.2.3	Second Fundamental Theorem of Integral Calculus	36
		1.2.4	Properties of definite Integrals	30
		1.2.1	Improper Integral	42
		1.2.6	Types of Improper Integral	42
			Comparison Tests for Convergence of $\int_{a}^{b} f(x) dx$ at 'a'	46
		1.2.7		10

		1.2.9	Comparison Test for Convergence at ∞	51
		1.2.10	Important Theorem	52
		1.2.11	Absolute Convergence	54
	1.3	Beta, C	Gamma Functions and Their Properties	55
		1.3.1	Gamma Function	55
		1.3.2	Beta Function	60
		1.3.3	Relation Between Beta and Gamma Function	62
		1.3.4	Duplication Formula	68
	1.4	Applic	ations of Definite Integrals to Evaluate Surface Areas and Volumes of Revolution	75
		1.4.1	Volumes of Solids of Revolution	76
		1.4.2	Surface Areas of Solid of Revolution	76
		Applic	ations to Real Life	85
		Summ	ary	92
		Projec	t/Practical/Activity	96
		Know	More	96
		Refere	nces/Suggested Readings	97
2.	Ca	lculu	s II	98-170
	Cu		pecifics	98
		Ration	-	98
			equisites	98
			Dutcomes	98
			ng of Unit Outcomes with Course Outcomes	99
		Histor	-	99
	2.1		Theorem	99
		2.1.1	Geometrical Interpretation of Rolle's Theorem	101
		2.1.2	Lagrange's Mean Value Theorem	106
		2.1.3	Geometrical Interpretation of Lagrange's Mean Value Theorem	107
		2.1.4		111
		2.1.5	Geometrical Interpretation of Cauchy's Mean Value Theorem	112
	2.2		's Theorem	116
		2.2.1	Taylor's Theorem with Lagrange's form of Remainder	116
		2.2.2	Maclaurin's Theorem with Lagrange's Form of Remainder	118
		2.2.3	Taylor's Theorem with Cauchy's Form of Remainder	118
		2.2.4	Maclaurin's Theorem with Cauchy's Form of Remainder	120
	2.3	Indete	rminate forms and L`Hospital's Rule	126
		2.3.1	L'Hospital Rule for Evaluation of Indeterminate form $\frac{0}{0}$ (Type-I)	126
		2.3.2	L'Hospital Rule for Evaluation of Indeterminate Form $\frac{\infty}{2}$ (Type-II)	133
			× × × × × × × × × × × × × × × × × × ×	

		2.3.3	L' Hospital Rule for Evaluation of Indeterminate form $0 \times \infty$ (Type-III)	135
		2.3.4	L'Hospital Rule for Evaluation of the Indeterminate form $\infty - \infty$ (Type-IV)	136
		2.3.5	L'Hospital Rule for Evaluation of Indeterminate Form 0° (Type-V)	139
		2.3.6	L'Hospital Rule for Evaluation of Indeterminate Form 1∞ (Type-VI)	141
		2.3.7	L'Hospital Rule for Evaluation of Indeterminate form ∞^0 (Type-VII)	142
	2.4	Maxir	na and Minima	148
		2.4.1	Condition for Maxima and Minima	148
		2.4.2	First Derivative Test for Extrema (Maxima or Minima)	149
		2.4.3	Second Derivative Test for Extrema (Maxima or Minima)	152
		Appli	cations to Real Life	160
		Sumn	nary	165
		Projec	ct/Practical/Activity	169
		Know	y More	169
		Refere	ences/Suggested Readings	170
3.	Ma	atrice		171-266
		Unit S	Specifics	171
		Ratio	nale	171
		Pre-R	equisites	171
		Unit (Dutcomes	171
		Mapp	ing of Unit Outcomes with Course Outcomes	172
		Histor	ry	172
		Intro	luction	172
	3.1	Defin	ition	173
		3.1.1	Various types of matrices	173
		3.1.2	Operation on matrices	179
	3.2	Vecto	rs	182
		3.2.1	operations on vectors	183
	3.3	Eleme	entary Operations (Transformation)	184
		3.3.1	Elementary Matrix	185
	3.4	Echel	on Form of a matrix	185
		3.4.1	Row-Echelon Form of a Matrix	185
		3.4.2	Row Reduced Echelon Form of a Matrix	185
		3.4.3	Column Echelon Form of a Matrix	185
		3.4.4	Column Reduced Echelon Form of a Matrix	186
	3.5	Deter	minants	186
		3.5.1	Explanation of Determinant of Order Two (or Second Order)	186
		3.5.2	Expansion of Determinant of Third Order	187
		3.5.3	Properties of Determinant	189
		3.5.4	Applications of Determinants	195
		3.5.5	Minors and co-factors	198

		3.5.6 Adjoint of a Square Matrix	200
	3.6	Rank of a Matrix	206
		3.6.1 Another way to Find the Rank of a Matrix	206
	3.7	Normal Form of a Matrix (Canonical Form)	211
		$\begin{bmatrix} I_r & 0 \end{bmatrix}$	
		3.7.1 To calculate P and Q where PAQ = $\begin{vmatrix} I_r & 0 \\ 0 & 0 \end{vmatrix}$	217
	3.8	Linear System of Equations	222
		3.8.1 Types of Linear Equations	223
		3.8.1.2 Homogeneous Equations	232
	3.9	Solution of System of Linear Equations by Determinants	236
		3.9.1 Cramer's Rule	236
		3.9.2 gauss Elimination method (To Solve system of linear equations)	239
		3.9.3 Gauss-Jordan Method (To Solve System of Linear Equations)	243
		3.9.4 Gauss Elimination Method for Finding the Inverse of a Matrix	248
		3.9.5 Gauss-Jordan Method for Finding the Inverse of a Matrix	251
		Applications to Real Life	254
		Summary	261
		Project/Practical/Activity	265
		Know More	265
		References/Suggested Readings	266
4.	Ve	ector Spaces I	267-323
4.	Ve	Unit Specifics	267–323 267
4.	Ve	-	
4.	Ve	Unit Specifics	267
4.	Ve	Unit Specifics Rationale	267 267
4.	Ve	Unit Specifics Rationale Pre-Requisites	267 267 267
4.	Ve	Unit Specifics Rationale Pre-Requisites Unit Outcomes	267 267 267 267
4.		Unit Specifics Rationale Pre-Requisites Unit Outcomes Mapping of Unit Outcomes with Course Outcomes	267 267 267 267 268
4.		Unit Specifics Rationale Pre-Requisites Unit Outcomes Mapping of Unit Outcomes with Course Outcomes History	267 267 267 267 268 268
4.		Unit Specifics Rationale Pre-Requisites Unit Outcomes Mapping of Unit Outcomes with Course Outcomes History Vector Space	267 267 267 267 268 268 268 268
4.		Unit SpecificsRationalePre-RequisitesUnit OutcomesMapping of Unit Outcomes with Course OutcomesHistoryVector Space4.1.1Vectors in R ⁿ	267 267 267 268 268 268 268 269
4.	4.1	Unit SpecificsRationalePre-RequisitesUnit OutcomesMapping of Unit Outcomes with Course OutcomesHistoryVector Space4.1.1Vectors in R ⁿ 4.1.2Vectors in Matrices	267 267 267 268 268 268 268 269 269
4.	4.1	Unit SpecificsRationalePre-RequisitesUnit OutcomesMapping of Unit Outcomes with Course OutcomesHistoryVector Space4.1.14.1.2Vectors in Rn4.1.3Vectors in Polynomial of Degree Atmost n	267 267 267 268 268 268 268 269 269 269
4.	4.1	Unit SpecificsRationalePre-RequisitesUnit OutcomesMapping of Unit Outcomes with Course OutcomesHistoryVector Space4.1.14.1.2Vectors in R ⁿ 4.1.3Vectors in Polynomial of Degree Atmost nLinear Dependence and Independence of Vectors	267 267 267 268 268 268 268 269 269 269 269 274
4.	4.1	Unit SpecificsRationalePre-RequisitesUnit OutcomesMapping of Unit Outcomes with Course OutcomesHistoryVector Space4.1.14.1.2Vectors in R ⁿ 4.1.3Vectors in Polynomial of Degree Atmost nLinear Dependence and Independence of VectorsLinear Combination of Vectors	267 267 267 268 268 268 268 269 269 269 269 274 274
4.	4.1	Unit SpecificsRationalePre-RequisitesUnit OutcomesMapping of Unit Outcomes with Course OutcomesHistoryVector Space4.1.14.1.2Vectors in Rn4.1.3Vectors in Polynomial of Degree Atmost nLinear Dependence and Independence of VectorsLinear span	267 267 267 268 268 268 269 269 269 269 269 274 277 281
4.	4.1 4.2 4.3	Unit SpecificsRationalePre-RequisitesUnit OutcomesMapping of Unit Outcomes with Course OutcomesHistoryVector Space4.1.14.1.2Vectors in Rn4.1.3Vectors in Polynomial of Degree Atmost nLinear Dependence and Independence of VectorsLinear span4.3.1Linear span4.3.2Basis of a vector space	267 267 267 268 268 268 269 269 269 269 274 277 281 284
4.	4.14.24.34.4	Unit SpecificsRationalePre-RequisitesUnit OutcomesMapping of Unit Outcomes with Course OutcomesHistoryVector Space4.1.14.1.2Vectors in R ⁿ 4.1.3Vectors in Polynomial of Degree Atmost nLinear Dependence and Independence of VectorsLinear Combination of Vectors4.3.1Linear span4.3.2Basis of a vector space4.3.3Dimension of vector space	267 267 267 268 268 268 269 269 269 269 269 274 277 281 284 284
4.	4.14.24.34.4	Unit SpecificsRationalePre-RequisitesUnit OutcomesMapping of Unit Outcomes with Course OutcomesHistoryVector Space4.1.14.1.2Vectors in R ⁿ 4.1.3Vectors in Polynomial of Degree Atmost nLinear Dependence and Independence of VectorsLinear Combination of Vectors4.3.1Linear span4.3.2Basis of a vector space4.3.3Dimension of vector spaceLinear Transformations	267 267 267 268 268 268 269 269 269 269 274 277 281 284 284 284

		4.6.1 Inverse of a Linear Transformation (Operator)	302
	4.7	Null Space or Kernel Of L.T.	304
	4.8	Range or Image of a Linear Transformation	304
	4.9	Rank and Nullity of a L.T.	304
		4.9.1 Sylvester's Law/Rank-Nullity Theorem	305
		Summary	317
		Know More	321
		References/Suggested Readings	322
5.	Ve	ector Spaces II	. 324–384
		Rationale	324
		Pre-Requisites	324
		Unit Outcomes	324
		Mapping of Unit Outcomes with Course Outcomes	325
		History	325
	5.1	Eigen Values and Eigen Vectors of a Linear Operator	325
	5.2	Eigen Values and Eigen Vectors of a Matrix	326
		5.2.1 Properties of Eigen Values	327
		5.2.2 Eigen Space	328
		5.2.3 Eigen bases	328
	5.3	Theorems Based on Symmetric and Skew-Symmetric (Anti-Symmetric) Matrices	344
	5.4	Orthogonal Matrix	348
		5.4.1 Properties of Orthogonal matrix	348
	5.5	Diagonalization of Linear Operator	353
		5.5.1 Diagonalization of Matrices	354
	5.6	Inner Product Space	359
		5.6.1 Properties of Inner Product Space	360
		5.6.2 Length (Norm) of a Vector	361
		5.6.3 orthogonal vectors (Perpendicular vector)	366
		5.6.4 Orthonormal Vectors	366
	5.7	Gram-Schmidt Orthogonalization Process	367
		Applications to Real Life	372
		Summary	377
		Project/Practical/Activity	381
		Know More	382
		References/Suggested Readings	382
I	ndex		385
C	CO an	nd PO Attainment Table	387